
Development
IN-HOUSE, OFF-THE-SHELF, CLOUD 



Software 
Development 
Life Cycle 
(SDLC)



1. Planning
Planning is the initial phase of the SDLC where the project’s objectives, 
scope, purpose, and feasibility are determined.

This phase involves gathering high-level requirements and creating a project 
plan that outlines the timeline, resources, and budget. 

Effective planning helps ensure that the project is aligned with business goals 
and sets the foundation for successful development.



2. Analysis
In the Analysis phase, detailed requirements are gathered and documented. 

This involves understanding the business needs, identifying user 
requirements, and defining functional and non-functional specifications. 

Analysts work closely with stakeholders to ensure all requirements are clearly 
understood and accurately captured. 

This phase also includes feasibility studies and risk assessments to identify 
potential challenges and solutions.



3. Design
The Design phase translates the requirements from the Analysis phase into a 
blueprint for constructing the software. 

This includes designing the system architecture, user interfaces, databases, 
and other system components. Detailed design specifications are created to 
guide developers in building the software. 

The goal is to create a clear, detailed plan that addresses all aspects of the 
system, ensuring it meets user needs and performs efficiently.



4. Implementation
During the Implementation phase, the actual code for the software is written 
based on the design specifications.

Developers use programming languages and tools to build the software 
components, integrating them into a cohesive system.

This phase involves coding, unit testing, and integration of various modules.

The implementation phase results in a working software product that can be 
tested for quality and performance.



5. Testing
The Testing phase involves validating and verifying that the software meets 
the requirements specified in the Analysis phase. 

Testers perform various types of testing, including unit tests, integration tests, 
system tests, and acceptance tests, to identify and fix defects. 

This phase ensures that the software is functional, reliable, and ready for 
deployment. Thorough testing helps to detect and resolve issues early, 
reducing the risk of defects in the final product.



6. Deployment
In the Deployment phase, the software is released to the production 
environment and made available to users. 

This phase involves installing, configuring, and enabling the software for 
operational use. 

Deployment may be done in stages, such as alpha and beta releases, before 
the final launch. 

The deployment phase also includes user training and documentation to 
ensure a smooth transition and adoption by end-users.



7. Maintenance
Maintenance is the ongoing phase where the software is updated and 
improved after deployment. 

This includes fixing bugs, adding new features, and making performance 
enhancements based on user feedback and changing requirements. 

Maintenance ensures the software continues to meet user needs and 
operates efficiently over time. 

Regular updates and support are crucial to keeping the software relevant and 
effective in a dynamic environment.



Software Development Methods
•Waterfall

•Rapid Application Development (RAD) and Prototyping

•Agile Methodology

•Continuous Integration/Continuous Deployment (CI/CD)



Waterfall 
Methodology



Drawbacks
1.Inflexibility to Changes: The Waterfall model is highly sequential and rigid, making it difficult 
to accommodate changes once a phase has been completed. Any modifications require 
going back to the initial phases, which can be time-consuming and costly. 

2.Late Testing: Testing is only performed at the end of the development cycle, after the entire 
system has been built. This can lead to the late discovery of critical issues or defects, which 
are more expensive and challenging to fix. 

3.Limited User Involvement: User feedback is typically collected during the initial requirements 
phase and not incorporated again until the testing phase. This limited user involvement can 
result in a final product that does not fully meet user needs or expectations, as there is little 
opportunity for users to influence the design and functionality during the development 
process.



Rapid Application Development 
(RAD) and Prototyping
RAD focuses on iterative development and the creation of prototypes to 
gather user feedback and refine requirements quickly.

High user involvement is crucial, ensuring that the final product closely aligns 
with user needs. 

This approach reduced development time and increased user satisfaction by 
incorporating feedback early and often. 

However, the emphasis on speed sometimes led to inadequate 
documentation and testing, and maintaining active user participation 
throughout the development process could be challenging.



Agile Methodology: Core Values
•Individuals and interactions over processes and tools: Emphasizing the 
importance of effective communication and collaboration among team 
members.

•Working software over comprehensive documentation: Prioritizing the 
delivery of functional software over extensive documentation. 

•Customer collaboration over contract negotiation: Fostering close and 
continuous collaboration with customers to ensure their needs are met.

•Responding to change over following a plan: Valuing adaptability and 
responsiveness to change over adhering strictly to a predefined plan



Iterative Development
ØProjects are broken down into small, manageable units of work called 
sprints or iterations, typically lasting two to four weeks. 

ØEach iteration involves planning, development, testing, and review, 
with the goal of producing a potentially shippable product increment. 

ØThis approach allows for continuous feedback and adjustments, 
ensuring that the project stays aligned with customer needs and market 
changes.



Iterative vs Waterfall



Continuous 
Integration/
Continuous 
Deployment 
(CI/CD)



Continuous Integration (CI)
•Frequent Code Integration: One of the core principles of CI is that developers should integrate 
their code changes into the main branch of the shared repository frequently, preferably several 
times a day

•Automated Builds: Each code integration triggers an automated build process, which compiles the 
code and packages it into a deployable artifact.

•Automated Testing: CI tools generate detailed build and test reports, providing visibility into the 
status of the integration process.

•Version Control Integration: CI systems integrate closely with version control systems (VCS), such 
as Git, Mercurial, or Subversion. 

•Continuous Monitoring: Continuous monitoring of the CI process ensures that the system is 
functioning correctly and that any issues are promptly identified and resolved. 



Continuous Deployment (CD)
Automated Deployment Pipeline

Incremental Updates and Rollback Mechanism

Monitoring and Logging

Feature Toggles



Automated Software Development



Off-the-shelf Application Packages
ØCost-effectiveness

ØIndustrial experience and expertise

ØExtensively tested and used by numerous other businesses

ØOngoing support and maintenance

ØLack of customization

ØIntegration issues



Popular Packages
SAP/Oracle/Microsoft: ERP

Salesforce: CRM

Workday: HR

Microsoft Project

Shopify: E-Commerce

Mailchimp: email marketing



Outsourcing
Outsourcing involves contracting third-party vendors to handle various aspects of the 
development process, from coding and testing to maintenance and support.

Pros:

ücost efficiency

üfaster time-to-market

Cons:

vCollaboration

vQuality control



Cloud Computing
Software as a Service (SaaS) : All functions

Platform as a Service (PaaS): IT services

Infrastructure as a Service (IaaS): basic computing and storage





In-house or Else?
ØA mixed approach for most companies
ØIn-house: Core competencies
ØOff-the-shelf or SAAS: General business operation

ØExpertise
ØIn-house: technology company or not
ØOff-the-shelf or SAAS: for most


