
Software
OS, Applications and Programming

What is Software

• Software refers to a set of instructions or programs that tell a
computer what to do.
• Types
• System Software: System software includes operating systems, device

drivers, utilities, and other essential programs that facilitate the
operation of computer hardware and provide a platform for running
application software.
• Application Software: Application software comprises programs

designed to perform specific tasks or provide services to users. This
category encompasses a vast array of software, including word
processors, web browsers, media players, games, and business
applications.

Machine Language

• At the lowest level of abstraction, computers understand
instructions in the form of binary digits, known as machine code
or machine language.
• Machine code is composed of sequences of 0s and 1s,

representing basic operations such as arithmetic, logic, and
data movement.
• While efficient for computers, machine code is complex and

cumbersome for humans to work with directly.

Von Neumann
Mache Code

• loading data from RAM
to CPU register

• storing data from CPU
register to RAM

• jumping to a different
instruction

• performing an
arithmetic or logic
operation

Machine Code

Instruction Set Architecture (ISA)

• An ISA is an abstract model of a computer that defines a set of
instructions for a specific CPU.
• Different CPUs have different ISAs.
• Commonly used ISAs include
• Intel x86 and x86-64: used by most desktop and server computers.

AMD64 is x86 compatible.
• ARM: used by most mobile processors
• RISC-V: relatively new, open source

Operating System
(OS)
• An operating system (OS) is the software

that manages and controls a computer's
hardware and software resources,
providing a platform for running
applications and performing various
tasks.
• The OS acts as an intermediary between

the user and the computer hardware,
making it possible for users to interact
with the computer in a more intuitive and
efficient way.

OS Functions

• Process Management: The OS manages the creation, execution, and
termination of processes (programs) running on the computer.
• Memory Management: The OS allocates and deallocates memory for

programs, ensuring efficient use of system resources.
• File System Management: The OS provides a file system, allowing

users to create, delete, and manage files and directories.
• Input/Output Management: The OS handles input/output operations

between devices and programs.
• Security: The OS provides mechanisms for user authentication,

access control, and protection against malware and viruses.

User Interface
(UI)
• Graphical User Interface (GUI): A visual

interface using icons, windows, and
menus, allowing users to interact with
the computer using a mouse and
keyboard. Examples: Windows,
macOS, Android.

• Command-Line Interface (CLI): A text-
based interface where users enter
commands using a keyboard, ideal for
advanced users and automation.

CLI and Shell

• CLI requires users to enter specific commands using the
keyboard to interact with the system.
• This interface is ideal for advanced users who prefer the

efficiency and speed that comes with typing commands.
• The command-line interface (CLI) in Linux is called shell that
• enables users to interact with the operating system and execute

commands.
• acts as a layer between the user and the kernel, providing a way to

communicate with the system and access its services.
• sets and manages environment variables, which are used to store

information about the system and user preferences.

Linux Shell Demo

• The cd command changes the current directory
• The ls command lists files and directories
• The mkdir command creates a new directory
• The rm command removes files or directories.
• The cp command copies files
• The mv command moves or renames files.
• The echo command prints text to the screen
• The man command displays manual pages for commands and

functions.

Shell Programming

• The shell supports scripting languages such as Bash, Python, and
Perl, enabling users to write complex scripts to automate
repetitive tasks, streamline workflows, and customize system
behavior.
• This flexibility and extensibility make the Linux shell an

indispensable tool for both novice users seeking to automate
routine tasks and seasoned developers crafting sophisticated
automation solutions.

Shell Code Demo
#!/bin/bash

Prompt the user for their name
echo "What's your name?"

Read the user's input into a variable
read name

Greet the user
echo "Hello, $name! Welcome to the Bash scripting world."

GUI vs CLI

• GUI is generally considered more user-friendly and accessible,
especially for beginners.
• CLI offers faster execution speeds and greater control over

system processes, making it a preferred choice for advanced
users and power users.
• For software developers, data analysts, and IT professionals,

proficiency in Command Line Interface (CLI) is an essential skill to
possess.
• Shell is a MUST-to-have for most operating systems

Applications: Local or Cloud
• Productivity Software: Helps with tasks like word processing,

spreadsheet analysis, and presentation design. Examples: Microsoft
Office, LibreOffice.
• Graphics and Multimedia Software: Used for image and video editing,

graphic design, and audio editing. Examples: Adobe Photoshop,
Audacity.
• Games: Entertainment software that provides interactive experiences.

Examples: Minecraft, Fortnite.
• Educational Software: Teaches new skills or subjects, often used in

schools. Examples: Duolingo, Khan Academy.
• Utility Software: Performs maintenance or management tasks, like disk

cleanup or virus scanning. Examples: Norton Antivirus, CCleaner.

Programming/Coding

• It is a systematic process that involves designing, writing,
testing, and deploying sequences of instructions that
computers can execute to perform specific tasks.
• Core Activities
• Designing algorithms
• Writing code
• Testing
• Deploying

More Than Coding

• Performance
• Security
• Scalability
• Maintainability

Programming Languages

• High-level programming languages
are abstracted from the computer
hardware, making them easier to
read and write.
• Examples: Python, Java, C#,

JavaScript, Ruby, PHP
• Low-level programming languages

are closer to the computer
hardware, making them more
difficult to read and write.
• Examples: Assembly languages,

machine code, C

Compiling

Interpreting

Compiling + Interpreting

Programming Paradigms

• Styles or approaches to writing software
• Three main programming paradigms have emerged:
• Procedural Programming
• Object-Oriented Programming (OOP)
• Functional Programming.

• Each paradigm has its unique principles, advantages, and
applications, which are essential to understand in order to
create effective and maintainable software solutions.

Procedural

• It focuses on procedures and functions that perform specific
tasks.
• A procedural program is like a recipe, where a set of instructions

(procedures) are followed in a specific order to produce a desired
outcome.
• This paradigm emphasizes step-by-step execution, sequential

flow, and explicit control over data and program flow.

Functional Programming

• First-class function: a function works like a data that can be
passed as a parameter of another function.
• Pure functions: Each function has no side effects and always

returns the same output given the same input.
• Immutability: The data of the program is not modified by the

functions.

Software Libs

• A software library is a collection of pre-written code, functions,
and tools that developers can use to perform specific tasks or
solve common problems.
• It provides a way to reuse code, reducing the need to write

everything from scratch, and enables developers to focus on
the unique aspects of their project.
• As an example, the Math library is a built-in JavaScript library

that provides mathematical functions, such as sqrt() and pow()

Software Packages

• A software package is a collection of software tools that can be
installed and configured in a consistent manner.
• It is typically much larger than a software library. Multiple

software libraries can be combined into a single package.
• Software package is not only used in programming.

Applications or application components can also be delivered
as a software package.

Package Management

• NPM for JavaScript
• Pip for Python
• Gradle or Maven for Java
• Windows installer for Windows
• Brew for MacOS

API

• Software API (Application Programming Interface) is the
interface between software systems, enabling them to
communicate and exchange data seamlessly.
• Just as a user interface (UI) facilitates interaction between

humans and software, API acts as the intermediary between
software applications, allowing them to request services,
exchange data, and leverage each other's functionality.

API is Everywhere

Software API

• Enabling communication between software systems
• Providing access to pre-built functionality
• Facilitating data exchange and integration
• Saving development time and resources,
• Promoting modularity and reusability of code

• Examples: Linux API, Stripe API.

API Standards
• REST (Representational State of Resource) is a widely used API standard that

leverages the HTTP protocol. It identifies resources using URIs and supports
CRUD (Create, Read, Update, Delete) operations. RESTful APIs are stateless,
meaning each request contains all the necessary information to complete
the request. This standard is ideal for simple and lightweight APIs.
• GraphQL, on the other hand, is a query language for APIs that allows clients

to specify exactly what data they need. The server then returns only the
requested data, reducing bandwidth and improving performance. GraphQL
has strong typing and validation, making it a popular choice for complex and
scalable APIs.
• gRPC is a high-performance RPC (Remote Procedure Call) framework that

uses Protocol Buffers for serialization and deserialization. It offers strong
typing and validation, making it suitable for large-scale and mission-critical
APIs. gRPC is particularly useful for building micro-services and distributed
systems.

API as Core Business

• At the heart of Stripe’s offerings lies its core service: Application
Programming Interfaces (APIs).
• Stripe’s APIs provide developers with a suite of tools and resources to

facilitate secure payment processing, from tokenizing sensitive
payment data to authorizing and processing transactions.
• Stripe’s commitment to developer-friendly APIs empowers businesses

of all sizes to innovate and grow in the digital economy.

• How to Create Stripe Payment Links to Add to Any Website:
https://www.youtube.com/watch?v=JqQXgWPZQEw

Algorithm

• In the realm of computer science, an algorithm
is a precise, step-by-step procedure or set of
rules that defines how to solve a particular
problem or perform a specific task.

• Algorithms can range from simple procedures,
such as sorting a list of numbers, to complex
algorithms used in artificial intelligence and
machine learning.

• Algorithms must be
• well-defined and unambiguous
• Finite
• Deterministic

Algorithmic
Thinking

• Algorithmic thinking, or computational thinking, is the ability to
conceptualize, design, and analyze algorithms to solve problems
effectively.
• Algorithmic thinking enables individuals to harness the power of

computers to solve a wide range of problems efficiently.
• From optimizing business processes to analyzing large datasets and

developing innovative software solutions, algorithmic thinking
empowers individuals to leverage technology to drive innovation and
progress.

